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Abstract A mathematic–physical model of the interac-

tion between cell membrane bilayer leaflets is proposed

based on the Casimir effect in dielectrics. This model

explains why the layers of a lipid membrane gently slide

one past another rather than penetrate each other. The

presented model reveals the dependence of variations in the

free energy of the system on the membrane thickness. This

function is characterized by the two close minima corre-

sponding to the different levels of interdigitation of the

lipids from neighbor layers. The energy barrier of the

compressing transition between the predicted minima is

estimated to be 5.7 kT/lipid, and the return energy is esti-

mated to be 3.1 kT/lipid. The proposed model enables

estimation of the value of the membrane elastic thickness

modulus of compressibility, which is 1.7 9 109 N/m2, and

the value of the interlayer friction coefficient, which is

1.9 9 108 Ns/m3.

Keywords Cell membrane � Lipid bilayer � Casimir

effect

Introduction

Casimir-Polder (Casimir 1948; Casimir and Polder 1948)

forces are universal physical forces arising from a quan-

tized field. They act even between two uncharged metallic

plates in a vacuum, placed a few micrometers apart,

without any external electromagnetic field. The idea that

Casimir forces may play an important role in different

biomembrane systems is quite new. Based on the funda-

mental work of Lifshitz (1956) dealing with retarded van

der Waals forces between macroscopic bodies, first it was

applied to the formation of cellular ‘‘rouleaux’’ (Bradonjić

et al. 2009) and confined biomembranes (El Hasnaoui et al.

2010). In a natural manner, it supplements the theory of

nonretarded van der Waals interactions in a lipid–water

system (Parsegian and Ninham 1970), sometimes offering

an interesting counterproposal.

Thus, forces related to the zero-point energy of quantum

fluctuations may play an important role in biology, and the

analysis of these forces offers a new view into biological

phenomena at the cellular level. Herein, we propose a

simple second-quantized explanation for the fact that cell

membrane bilayer leaflets slip (Otter and Shkulipa 2007)

past one another, rather than penetrate each other. This

membrane feature is of great importance as it determines

the anisotropy of the membrane’s rheological properties.

The relative freedom of movement of molecules along

membrane leaflets and the relative restriction of displace-

ment in the transverse direction account for the great lateral

fluidity and the small perpendicular compressibility of a

membrane (Evans and Hochmuth 1978). These dual

mechanical properties, both fluid-like and solid-like, have

an impact on the structure and function of the proteins

embedded in the lipid bilayer matrix (Andersen and Koe-

ppe 2007). This impact finally determines the status of the

cell membrane as an active barrier, a natural organizer and

an important participant in all processes of life.

The proposed model of the interaction of the cell

membrane bilayer leaflets considers the membrane interior

to be a three-layer dielectric sandwich. The free energy of
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the system is related to the electromagnetic field excitations

in the ground state. The free energy depends on the varying

thickness of the central layer, where lipid chains penetrate

the opposite layers and where the density of lipid chains,

and the dielectric permittivity, varies in space. The theo-

retical values of the two energy minima, the membrane

elastic thickness modulus of compressibility and the

interlayer friction coefficient, were set according to this

model.

The Model

The cell membrane interior was considered to be a three-

layer dielectric sandwich, which consists of parallel slabs

as in Fig. 1. The two lateral peripheral regions of this

system are fully occupied by all the lipids of the local

leaflet. The remaining central region contains the hydro-

carbon tails that penetrate from the neighboring layers. The

dielectric constant, ec, of this central layer differs from the

dielectric constant, ep, of the other parts of the membrane.

We assumed that the length of the lipids in each leaflet may

vary within a narrow range, L ± dL/2, where L represents

the average lipid length and dL represents the width of the

length distribution. The distribution of the lipid lengths was

assumed to be uniform. Thus, the perpendicular cross

section of a membrane bilayer matrix resembles ‘‘the two

overlapping combs with some broken teeth.’’

The thickness of the central region, dc, falls to a mini-

mum value equal to dL in the configuration in which the

total membrane thickness, d, equals 2L (Fig. 2a). This

configuration we called ‘‘configuration MTCR’’ (minimal

thickness of the central region). To clarify further consid-

erations, configuration MTCR was treated as the reference

configuration. In this configuration, dc may increase both

with an increase (Fig. 2b) and with a decrease (Fig. 2c) in

the total membrane thickness. Thus, the possible variation

in the thickness of the central region in configuration

MTCR is unidirectional.

For convenience, we introduced the variable x to

describe the difference between the actual total membrane

thickness and the thickness of the membrane in configu-

ration MTCR; that is, x = d-2L. Then to formalize the

description of the central region, one may write

dc = dL ? |x|, where |x| denotes the absolute value.

The dielectric constant, ec, was assumed to vary in space

within the central region due to variations in the lipid

density. Variations along the direction perpendicular to the

membrane plane were postulated. At first approximation, ec

was simply characterized by the spatial average heci. In

general, when the total membrane thickness differs from

the thickness of the reference configuration by x, the

average heci changes as described by the following

formula:

heci ¼
1þ ep � 1

� �
1þ jxj=dL

1þjxj=dL

� �
x\0

ep x ¼ 0

1þ ep � 1
� �

1
1þx=dL x [ 0

8
><

>:
ð1Þ

For details, see Appendix.

The plot of Eq. 1 indicates (Fig. 3) that the average

heci increases with the compression of the membrane

thickness (x \ 0) and decreases with membrane thickness

extension (x [ 0). For the membrane in the configuration

MTCR (x = 0), heci strictly equals ep.

Quantum electrodynamic considerations reveal that two

dielectric plates separated by a dielectric medium may be

attracted as a result of the decrease in the zero-point energy

of the quantum electromagnetic field excitations (Srivast-

ava et al. 1985). In the case of the cell membrane, by

approximating the dielectric constant of the central region

with the average value heci, the free energy, F, of the field

per unit area may be described by the following equation

(Bradonjić et al. 2009):

F ¼ � p2

720

ep � heci
ep þ heci

� �2 �hc
ffiffiffiffiffiffiffiffi
heci

p
dLð Þ3 1þ jxj=dLð Þ3

ð2Þ

where �h is the reduced Planck constant and c is the speed of

light in a vacuum; the dependence of heci on x is described

by Eq. 1.

ep ec ep

LL δ

Fig. 1 Three-layer dielectric sandwich model of a cell membrane.

Only the longest and shortest lipids are shown. L average lipid length,

dL width of the lipid length range, ec dielectric constant of the central

region, ep dielectric constant of the peripheral region
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Results

Equations 1 and 2 show that, for ideally flat leaflets

(dL = 0), Casimir forces couple membrane layers at zero

distance (x = 0), with the free energy tending to negative

infinity. More reasonable calculations (dL = 5 Å, ep = 2),

taking into account the heterogeneity of the lipid lengths

(Blaurock 1982) and specifying the dielectric constant of

the peripheral regions of the membrane (Huang and Levitt

1977) were also performed. These calculations indicate

(Fig. 4) that there are two finite minima of free energy,

both for the membrane in configurations close to the

MTCR. The first (lower) minimum (F = -4.68 9 10-2 J/

m2) is for leaflets being slightly separated (x = 4.0 Å), and

the second one (F = -2.54 9 10-2 J/m2) is for leaflets

being moderately pushed together (x = -2.9 Å).

According to the model, in both cases, the thickness of the

central region of the membrane (dc = 9.0 and dc = 7.9 Å)

is larger than the assumed thickness in the configuration

MTCR (dc = 5 Å).

Discussion

We assumed that the central region of the membrane may

be treated as a kind of leaflet interface. One interesting

question is how the interface is stabilized to avoid leaflet

penetration and sticking. The proposed model may offer a

simple explanation based on the Casimir effect in dielec-

trics. At reasonable values of the applied parameters (see

‘‘Results’’ section), the model predicts two free energy

minima. For the membrane organized in the lower energy

minimum (x = 4 Å), its leaflets are separated by 4 Å

d = 2L

dc = L

MTCR

a

d > 2L

dc > b

d < 2L

dc > cδ Lδ Lδ

Fig. 2 Unidirectional variations in the thickness of the central region

of the membrane. Only the longest and shortest lipids are shown.

a Configuration MTCR. Total membrane thickness d = 2L. Central

region thickness dc = dL. b Bilayer leaflets farther apart than in

configuration MTCR. Total membrane thickness d [ 2L. Central

region thickness dc [ dL. c Bilayer leaflets closer together than in

configuration MTCR. Total membrane thickness d \ 2L. Central

region thickness dc [ dL. L average lipid length, dL width of the lipid

length range, MTCR minimal thickness of the central region

100-10

1

p

2 p - 1

x/ Lδ

ε

ε

cε

Fig. 3 The space average of the dielectric constant in the central

region, heci, as a function of the ratio x/dL. x the difference between

the total membrane thickness and the membrane thickness in

configuration MTCR, dL width of the lipid length range, ep dielectric

constant in peripheral regions of the membrane
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Fig. 4 The free energy, F, of the field per unit area as a function of a

change, x, in the membrane thickness relative to the thickness of the

MTCR membrane
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greater than in configuration MTCR. At the assumed het-

erogeneity of the lipid lengths (dL = 5 Å), this result means

that 20 % of lipids (1-x/dL) penetrate into the neighboring

leaflet (Fig. 5a) but by no more than 1 Å (dL-x).

According to the results presented in Fig. 4, transition

into the second (higher) minimum (x = –2.9 Å) requires

approximately 5.7 kT/lipid (calculated for T = 300 K and

area per lipid a = 50 Å2). In this minimum energy con-

figuration, the membrane leaflets are in closer contact. All

lipids penetrate the opposite layer but no deeper than 7.9 Å

(Fig. 5b). The return to the other minimum requires 3.1 kT/

lipid.

The revealed characteristic energies are several times

higher than those estimated assuming the average tension c
(0.003 mN/m) of living cells (Blanchard and Rauch 2012).

The result ca � kT indicates that the Casimir effect may

be an important contributor to the membrane dynamics,

along with the hydrophobic effect.

To study the mechanical properties of the presented

model membrane, the elastic thickness modulus of

compressibility, k, was numerically estimated using a dif-

ferential second derivative of the free energy at the first

minimum (k = d F00). Assuming a bilayer thickness of

d = 5 nm (Kuchel and Ralston 1998), k = 1.7 9 109 N/

m2; i.e., this estimated value of k is of the same order as

that measured using volume dilatometry of lipid bilayers

(Srinivasan et al. 1974). This result indicates that the

central region of the cell membrane resembles an

‘‘incompressible’’ core that does not allow lipid interleaflet

penetration.

The results of the presented model also enable estima-

tion of the value of the interlayer friction coefficient,

f (friction force per unit area and unit velocity). Approxi-

mating the end of the lipid penetrating the neighbor leaflet

with a hemisphere of a radius r that experiences the action

of the Stokes force from the liquid passing with the

velocity 2v, one may obtain f = 6pgr/a, where g is the

membrane shear viscosity. Taking the typical value of

viscosity g = 0.1 Ns/m2 estimated from the diffusion

coefficient of membrane-spanning proteins in phospholipid

bilayers (Waugh 1982) and assuming that the membrane is

in the first minimum with r = 0.5 Å, f = 1.9 9 108 Ns/

m3, which is within the range of reported experimental

values (Shkulipa et al. 2005; Otter and Shkulipa 2007). For

the second minimum, one may expect an eightfold higher

value because of a deeper penetration.

According to the model, a membrane bilayer in a basic

state (lower minimum) should possess relatively small in-

terleaflet friction. The probability that, due to thermal

fluctuations, some regions of the membrane reach second

minimum is relatively small.

At first glance, one may worry about some physical and

mathematical problems with the proposed approach. It is

obvious that some points require additional discussion,

especially phenomena at a physical level neglected in our

model. First of all, is it justified to assume that the lipids of

opposite leaflets interpenetrate each other at all? Steric

interactions seem to be the dominant suppressor of inter-

digitation. However, a spontaneous or induced interdigi-

tated phase of bilayers consisting of double-tail lipids was

confirmed in computer simulation and differential scanning

calorimetry experiments (Kranenburg 2004; Kranenburg

et al. 2004; Mavromoustakos et al. 2011). Moreover, a

simple estimation below shows that the possible steric

effect is not energetically dominant, as one may expect. Let

us assume that during interdigitation the part p of lipids is

compressed and their length decreases by an assumed

certain value, k. Let us also assume that each of two lipid

acyl chains contains the number b of C–C bonds charac-

terized by a certain bond stiffness, g. Then, elastic defor-

mation energy per lipid molecule may be calculated as

pgk2/b. For typical conditions, p = 1/10 (meaning that

50 % of penetrating lipids in the lower minimum are

4.50.5-4.5

100%

-0.5

n 1 n 2

a

ξ [A]

3.951.05-3.95

100%

-1.05

n 1 n 2

b

ξ [A]

Fig. 5 The area densities n1 and n2 of lipids belonging to a given

leaflet as a function of a distance, n, from the membrane midplane.

The range occupied by the longest and shortest lipids is shown above.

a For the first minimum (lower) of free energy, x = 4 Å. b For the

second minimum (higher) of free energy, x = -2.9 Å
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compressed), g = 100 N/m, k = 0.5 Å
´

and b = 15; this

energy equals 0.8 kBT. These are only 7 % of the predicted

value of the energy barrier in a lower minimum and, as

such, may be neglected at first approximation. The next

question is, how much does the derived shape of the free

energy, F (Fig. 4), depend on the specific way that the

interpenetration occurs? It was assumed that the distribu-

tion of lipid lengths was uniform and, in this way, inter-

digitation varied linearly with a distance from the

membrane midplane (Figs. 5, 6). What will change if we

assume the more spectacular variation? In extreme cases,

when a single-point distribution (dL = 0) is assumed, one

infinite minimum of energy at midplane will be obtained

and the energy will increase with distance, like –1/|x|3.

Thus, narrowing the distribution lowers minima and

approaches them together. It should be stressed that the

parameters heci, ep and dL in Eq. 2 may also effectively

describe a more diverse system.

Applied formula for the free energy per unit area, Eq. 2,

assuming ep ? ? and heci ? ?, gives the famous Casi-

mir result for the energy of attraction between ideal mir-

rors. This energy is a result of the change in the zero-point

energy of an empty quantum vacuum. From the other hand,

it is well known that real cell membranes are under the

permanent influence of electrostatic interactions. Assuming

a natural transmembrane electric potential V = 100 MV, a

membrane thickness dm = 10-8, an effective membrane

dielectric constant em = 2 and a vacuum permittivity

e0 = 10-11 [F/m], it is easy to estimate the area density of

the energy of an electric field, 0.5e0em (V2/dm). It is equal to

10-5 J/m2 . This result is three orders less than the energy

of the considered Casimir effect.

It is necessary to underline that the discussed formula is

correct only within certain assumed constraints. One of

them, zero temperature approximation (Landau and Lif-

shitz 1960) may be justified for considered conditions

(kBT � �hc/dc). The second assumption, i.e., the same

dielectric constant at all frequencies, is formally valid for

ideal dielectrics or in the case of large separations. How-

ever, for values of constant permittivity not so far from

unity (vacuum value), possible error for small distances is

disregarded. Moreover, the bulk term in energy is disre-

garded, which may be dominant for large separations. As

the ratio of energies of attraction of water slabs and lipid

slabs (both estimated using Eq. 2) is as small as 1:10, for

the sake of simplicity, the influence of water outside the

membrane was not considered. Anisotropy in the dielectric

constant is also beyond the scope of this article, and the

model for the dielectric constant in the region of inter-

digitation is very simple, based on a linear superposition of

dielectric constants in terms of the effective densities of

tails.

We realize that real membranes, especially cell mem-

branes, are obviously complex, heterogeneous, nonideal

dielectrics with complicated frequency responses and real

conductivity. They are certainly not perfectly plain and

smooth plates. Despite the above simplifications, the gen-

eral predictions of our model, i.e., the magnitude of the free

energy and the existence of two energy minima, seem to be

still reasonable and wait for more detailed further investi-

gation and confirmation. A lateral Casimir effect for cor-

rugated planes or nonretarded local pairwise van der Waals

forces might provide a better description of the physics

there and provide a more accurate description. For exam-

ple, the last one can replace an inverse-cube law, describ-

ing variation in energy with distance, by an inverse-square

law. Using this method, a simple estimation of energy of

so-called hydrophobic bonding, at a Hamaker function

equal to 7 9 10-21 J and a distance of 50 Å
´

(Parsegian and

Ninham 1970), gives the value of the density of free energy

close to 10-5 J/m2. This quantity is three orders less than

the energy of lipid–lipid interactions and two orders less

than the energy of water–water interactions estimated in

our model. We think that future numerical brute-force

simulations might make an important contribution toward a

better understanding of the mentioned discrepancy.

In light of these findings, it is evident that the Casimir

effect may play an important role in many biological

phenomena and may be a universal force that organizes the

tensegrity structure of biological systems. Some scientists

might expect spectacular ‘‘levitation’’ forces between the

leaflets, but it appears that there is instead a ‘‘quantum

trap’’ preventing membrane leaflet interdigitation and col-

lapse as well as maintaining a significant gap between

leaflets, which leaves molecules a plane with freedom of

0 L +x/2δL/2 +x/2-L-x /2
δL/2-x /2

−δL/2-x /2

n p

n 1 n 2

−δL/2+x /2

ξ

Fig. 6 The area densities n1 and n2 of lipids belonging to a given

leaflet as a function of the distance, n, from the membrane midplane.

The range occupied by the longest and shortest lipids is shown above.

np total number of lipids belonging to a given leaflet per unit surface

area, L average lipid length, dL width of the lipid length range,

x = d - 2L, where d is the total membrane thickness
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movement. Even without taking into account interlayer

lipid collisions, hydrophobic interactions and the stabiliz-

ing role of proteins, Casimir forces may prevent lipid chain

mishmash or molecular escape. This hypothesis appears to

be fruitful and is worth experimental verification.
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Appendix

The Average Value of the Dielectric Constant

in the Central Region of a Lipid Bilayer

Let variable n represent the distance from the membrane

midplane; then, the central region may be defined as the

membrane layer within the range �dL=2� xj j=
2� n� dL=2þ xj j=2. Here, dL represents the width of the

distribution of lipid lengths, and x = d - 2L, where d is

the total membrane thickness and L is the average lipid

length. In general, x may be positive (thickness expansion),

negative (thickness compression) or zero (configuration

MTCR) and falls within the range x [ dL - 2L. Assuming

that the dielectric constant ec in the central region varies

locally with n, ec depends on the number of lipids, n, that

are passing through the unit area of plane n = constant.

This dependence may be described as

ec ¼ 1þ ðep � 1Þ n

np

ð3Þ

where ep is the dielectric constant of the peripheral region

of the membrane fully occupied only by the lipids

belonging to a given leaflet and np is the total number of

lipids belonging to a given leaflet per unit surface area.

The area density n of lipids at distance n can be

described by the equation

n ¼ n1 þ n2 ð4Þ

where n1 and n2 are area densities of lipids belonging to a

given leaflet.

For a uniform distribution of lipid lengths, the constituent

densities n1 and n2 (Fig. 6) can be described as follows:

n1 ¼
np �L� x=2� n\� dL=2� x=2
np

2
1� nþx=2

dL=2

� �
�dL=2� x=2� n� dL=2� x=2

0 dL=2� x=2\n� Lþ x=2

8
><

>:

ð5Þ

n2 ¼
0 �L� x=2� n\� dL=2þ x=2
np

2
1þ n�x=2

dL=2

� �
�dL=2þ x=2� n� dL=2þ x=2

np dL=2þ x=2\n� Lþ x=2

8
><

>:

ð6Þ

Independently of the sign of x, the central region

consists of three layers:

�dL=2� xj j=2� n\� dL=2þ xj j=2

�dL=2þ xj j=2� n� dL=2� xj j=2

dL=2� xj j=2\n� dL=2þ xj j=2

8
<

:
ð7Þ

Calculating the sum in Eq. 4, with the help of Eqs. 5, 6

in respective layers, depending on the sign of x, one can

obtain:

n ¼

np þ np

2
1þ n�x=2

dL=2

� �
�dL=2� xj j=2� n\� dL=2þ xj j=2

np 1� x
dL

� �
�dL=2þ xj j=2� n� dL=2� xj j=2 x\0

np þ np

2
1� nþx=2

dL=2

� �
dL=2� xj j=2\n� dL=2þ xj j=2

8
>>><

>>>:

ð8Þ
n ¼ np �dL=2� n� dL=2 x ¼ 0 ð9Þ

n ¼

np

2
1� nþx=2

dL=2

� �
�dL=2� x=2� n\� dL=2þ x=2

np 1� x
dL

� �
�dL=2þ x=2� n� dL=2� x=2 x [ 0

np

2
1þ n�x=2

dL=2

� �
dL=2� x=2\n� dL=2þ x=2

8
>>><

>>>:

ð10Þ

The space average of n in the range �dL=2�
xj j=2� n� dL=2þ xj j=2 is calculated as

hni ¼

RdL=2þ xj j=2

�dL=2� xj j=2

ndn

dLþ xj j ð11Þ

and according to Eqs. 8, 9 and 10 equals

hni ¼
np 1þ xj j=dL

1þ xj j=dL

� �
x\0

np x ¼ 0

np
1

1þx=dL x [ 0

8
><

>:
ð12Þ

Then, the space average of the dielectric constant ec

according to Eqs. 3 and 12 can be described as

heci ¼
1þ ep � 1

� �
1þ jxj=dL

1þjxj=dL

� �
x\0

ep x ¼ 0

1þ ep � 1
� �

1
1þx=dL x [ 0

8
><

>:
ð13Þ

References

Andersen OS, Koeppe RE (2007) Bilayer thickness and membrane

protein function: an energetic perspective. Annu Rev Biophys

Biomol Struct 36:107–130

388 P. H. Pawlowski and P. Zielenkiewicz: Quantum Casimir Effect

123



Blanchard A, Rauch C (2012) Membrane lipid asymmetry and

permeability to drugs: a matter of size. In: Deavaux PF,

Herrmann A (eds) Transmembrane dynamics of lipids. Wiley,

Hoboken, pp 251–274

Blaurock AE (1982) Evidence of bilayer structure and of membrane

interactions from X-ray diffraction analysis. Biochem Biophys

Acta 650:167–207
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